Free products of abelian groups in the unit group of integral group rings
نویسندگان
چکیده
منابع مشابه
Unit Groups of Integral Finite Group Rings with No Noncyclic Abelian Finite Subgroups
It is shown that in the units of augmentation one of an integral group ring ZG of a finite group G, a noncyclic subgroup of order p, for some odd prime p, exists only if such a subgroup exists in G. The corresponding statement for p = 2 holds by the Brauer–Suzuki theorem, as recently observed by W. Kimmerle.
متن کاملDivisibility Properties of Group Rings over Torsion-free Abelian Groups
Let G be a torsion-free abelian group of type (0, 0, 0, . . . ) and R an integrally closed integral domain with quotient field K. We show that every divisorial ideal (respectively, t-ideal) J of the group ring R[X;G] is of the form J = hIR[X;G] for some h ∈ K[X;G] and a divisorial ideal (respectively, t-ideal) I of R. Consequently, there are natural monoid isomorphisms Cl(R) ∼= Cl(R[X;G]) and C...
متن کاملGrothendieck Groups of Abelian Group Rings
Let R be a noetherian ring, and G(R) the Grothendieck group of finitely generated modules over R. For a finite abelian group n, we describe G(Rn) as the direct sum of groups G(R’). Each R’ is the form RI<,,, I/n], where n is a positive integer and Cn a primitive nth root of unity. As an application, we describe the structure of the Grothendieck group of pairs (H. u), where His an abelian group ...
متن کاملClass Groups of Integral Group Rings(x)
Let A be an Ä-order in a semisimple finite dimensional /(-algebra, where K is an algebraic number field, and R is the ring of algebraic integers of K. Denote by C(A) the reduced class group of the category of locally free left A-lattices. Choose A= ZC, the integral group ring of a finite group G, and let A be a maximal Z-order in QG containing A. There is an epimorphism C(A)-C(A'), given by JIÍ...
متن کاملFree Groups and Subgroups of Finite Index in the Unit Group of an Integral Group Ring∗
In this article we construct free groups and subgroups of finite index in the unit group of the integral group ring of a finite non-abelian group G for which every non-linear irreducible complex representation is of degree 2 and with commutator subgroup G′ a central elementary abelian 2-group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1998
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-98-04340-8